测定光纤标量模传输系数 8mm 的方法

孙宗建

(上海同济大学物理系)

提 要

本文报道了利用棱镜-光纤耦合器,通过测量耦合角或 m-线的位置,从而得到光纤标量模传输系数 β_{mn} 的方法。测得的 β_{mn} 值与用标量近似法算得的 β_{mn} 相差很小。

为了测定光纤标量模传输系数 β_m, 首先要把被测光纤的各个标量模(或模式群)分别 激发出来。选模激发的方法一般分为两类:第一类是端面激发——通过改变会聚光束相对光 纤轴的入射角度以及在光纤端面的入射位置来实现的^[13],第二类是侧向激发——通过改变 棱镜与光纤之间耦合的相位匹配条件来实现的^[33],它是薄膜-棱镜耦合器的一个发展^[33]。两 类方法具有不同的激发效率,前者较高,后者较低,但后者便于应用于实际测量上。

本实验测定光纤标量模传输系数 βmn 的方法是,采用棱镜-光纤耦合器,激发不同的模式(或模式群)在光纤中传输,按照光纤模与棱镜模的相位匹配条件,通过测量相应的入射角 θ_i,得到 βmn 的数值。同时,可以用输出棱镜耦合出代表各模式的 m-线,(在此引用平面波 导中的命名)配合远场图样,辨认各 m-线对应的不同模式,通过测量 m-线的位置,也可算 得 βmn 的数值。因此, βmn 的测量可简单地归结为耦合角 θ, 的测量或 m-线位置的测量。

一、原理与实验装置

在实际应用上,通常采用标量近似法来得到 β_{mn} 的计算值。对于相对折射率差 $d\ll1$ 的 弱导光纤,它的折射率分布可表为

$$n_1(r) = n_1(0) \left[1 - 2\Delta(r/a)^{\alpha} \right]^{1/2}$$
(1)

当 $\alpha = 2$, 即平方律分布时, 按圆柱坐标系中的标量亥姆霍兹方法, 可求得标量模 LP_{*lp*}, (l=m, p=n+1)的传输系数 β_{mn} 为

$$\beta_{mn} = n_1(0) k_0 \left[1 - \frac{2\sqrt{2}\Delta}{n_1(0) k_0 a} (m + 2n + 1) \right]^{1/2}, \tag{2}$$

式中m为方位指数,表示远场光斑沿圆周光强有2m个峰值; n为径向指数,表示远场光斑沿半径光强节点的数目。

当 α=∞,即均匀分布(阶跃光纤)时,计算标量模 βmn 的公式为^[4]

$$\beta_{mn} = [B(n_1 - n_2) + n_2] k_0, \tag{3}$$

式中 n1、n2 分别为纤芯与包层的折射率, ko 为真空中的波数, B 为归一化传输参数

$$B = \frac{(\beta_{nn}^2/k_0^2 - n_2^2)}{(n_1^2 - n_2^2)} \underbrace{\sim}_{A \ll 1} \frac{\beta_{nn}/k_0 - n_2}{n_1 - n_2} \mathbf{o}$$
(4)

收稿日期: 1984年10月29日; 收到修改稿日期: 1985年2月12日

对于某一给定的阶跃光纤,可根据其归一化频率参数 v,在各标量模对应的 B-v 关系曲 线上^[4]找出它们的 B 值,然后按(3)式算得各标量模的传输系数。

实验装置如图 1 所示。 波长 6328 Å 的氦氛激光束通过长焦距透镜聚焦,以θ,角射至 直角棱镜(ε=45°0′)的斜边,棱镜与光纤之间保持光学接触,为此,在它们的间隙中加入高 折射率的耦合液,其折射率介于棱镜与光纤折射率之间。 在屏上能观察到不同模式对应的 远场光斑图样以及对应的 *m*-线。

对于梯度折射率分布光纤,按相位匹配条件

 $n_{p}k_{0}\sin\theta_{p}\cos\alpha = n_{1}(r)k_{0}\cos\theta_{mn}(r)|_{r< R_{s}} = n_{1}(R_{s})k_{0} = n_{1}(0)k_{0}\cos\theta_{mn}(0),$ (5)

 $n_pk_0 \sin \theta_p \sin \alpha = m/R_s$, 式中 n_p 为棱镜折射率; k_0 为光波在真空中的 波数; θ_p 、 α 如图 1 所示; $\theta_{mn}(r)$ 为射线分析 法中对应于标量模 ψ_{mn} , 在径向坐标 r 处的 本地平面波的波矢与光纤轴的夹角; R_s 为对 应于标量模 ψ_{mn} 满足 $\theta_{mn}(R_s) = 0$ 的 r 值, 它 表示射线离轴线距离的最大值, 相当于阶跃 光纤纤芯之半径。各标量模具有不同的 R_s , 因而棱镜耦合的效率对各模式各不相同。本 实验的目的在于测定 β_{mn} , 只需将包层腐蚀 到足够薄,能把被测标量模对应的 m-线耦合 出来。

649

二、结果与讨论

对于阶跃光纤, $n_1(r) = n_1$, $\theta_{mn}(r) = \theta_{mn} 与 r 无关_{\circ}$ (5)式相位匹配条件变为 $n_p k_0 \sin \theta_p \cos \alpha = n_1 k_0 \cos \theta_{mn}$, (6) $n_p k_0 \sin \theta_p \sin \alpha = m/r_{oo}$ (7)

因此,不仅能用测得的入射角 θ_i,由(6)式左边项算得 β_{mn} 值,也可用测得的出射角 θ',由(6) 式右边项算得 β_{mn} 值。由于本实验中,棱镜表面已不在渐消场范围,因此不需要把它紧压光 纤,避免了光纤弯曲引起的角度测量误差。

1. 多模光纤情况

图2的照片表示用长8cm的阶梯折射率光纤对不同入射角6,下激发出的模式群的远

Fig. 2 Far-field radiation patterns and m-lines excited at different incident angles θ_{\bullet}

7期

场光斑图样。入射激光束通过长焦距透镜会聚*,所以有一个几度的立体角分布范围,α-般也是该数量级,所以在一定的入射角θ_i时,总包含一部分能激发ψmn模的光能量。从图 2 可以看出,亮环对应的出射角θ'有一定的角宽度,也就是说,实际上它们由若于个半径离散 分布的同心亮环组成。这表明有若干个模式群同时被激发,这是由于入射光束有一定的角 分布以及模式间的耦合造成的。因此,入射角为θ_i时,激发的模式群对应于远场图样上中 间的一个亮环,其半径取这若干个同心亮环半径的平均值。图 2 中照片右侧的亮线是从输 出棱镜耦合出的 m-线,当屏离远时,能看出它实际上由几根亮线组成。

m-线的一般特性如图 3 所示。采用磷硅系(掺 P₂O₅)多模梯度折射率(准抛物线分布, 中心有 30% 凹陷)光纤,芯径 50 μm,外径 125 μm, Δ=0.71%, *NA*=0.17,长 2.5 m。在 此作了端面激发,有较多的模式群同时被激发出来。限于本方法所得到的 *m*-线,仅能部分 地反映标量模的简并特性。从图 3 可以看出,高阶模的简并度比较高,即分裂的段数较多, 如图 3(*b*)所示。一般说来,各段的亮度也各不相同,并具有不同的偏振方向。当转动检偏 器时,能观察到交替发生的明暗变化,而平面光波导中 TE 模或 TM 模各 *m*-线则具有同一 的偏振方向。

表1给出了8cm长的阶梯折射率光纤分别按(6)式左边项与右边项得到的相应模式群

(a) 低阶模

(b) 高阶模

图 3 梯度折射率多模光纤 m-线照片

Fig. 3 Characteristics of m-lines for a multi-mode graded index fiber(a) High-order modes filtered; (b) High-order modes

表 1 根据入射角 θ_i 及远场亮环半径分别计算得到的 β_{mn}

Table 1 β_{mn} values determined from incident angle θ_i and radius of far-field bright ring

θ_i	θ_p	$\beta_{mn}(\mu m^{-1}) (n_p k_0 \sin \theta_p)$	R(cm)	θ'	θ_{mn}	$\beta_{mn}(\mu m^{-1}) (n_1 k_0 \cos \theta_p)$
18°42′	55°34′	14.338	22.5/2	12°56′	8°50′	14.325
19°02′	55°44′	14.369	21.0/2	12°05′	8°15′	14.346
19°12′	55°50′	14.384	18.75/2	10°50′	7°24′	14.375
19°22′	55°56′	14.402	17.5/2	10°07′	6°55′	14.391
19°32'	56°01′	14.415	15.75/2	9°08′	6°15′	14.410
19°42′	56°06′	14.430	14.5/2	8°25′	5°46′	14.423
19°52′	56°12′	14.447	12.2/2	7°06′	4°52′	14.445
20°02'	56°18′	14.462	10.0/2	5°50′	4°00′	14.461
20°12′	56°23′	14.478	7.5/2	4°23′	3°00′	14.477

 $(n_p=1.751, n_1=1.460, L=49.0 \,\mathrm{cm})$

* 为激发较单一的模式,可采用未聚焦的激光束,但θ,与α需分别调整,且激发效率较低。

650

5卷

的传输系数。根据标量模传输系数 β_{mn} 的简并特性, 在测量与计算 β_{mn} 时, 为方便起见, 可取 m=0, 即亮环上强度均匀的情况, 从(7)式, $\alpha=0$, 入射角 θ_i 的测量精度由自准直法确定法线位置的精度 1'来决定。(测角仪精度 10'')亮环半径 R 的测量精度为1mm, 引起 $n_1k_0\cos\theta_{mn}$ 的误差为 0.0015 (μ m⁻¹)。从表1可知, 两种方法测定的 β_{mn} , 差异小于 0.2%。

2. 单模光纤情况

由于光纤辐射的电磁场,其远场分布为光纤端面内模场分布的圆孔 Fraunhofer 衍射^[5]的结果。因而,对于单模光纤及正化频率 » 较小的光纤,根据远场光斑只能大致地辨别被激发的标量模模式及指数 m、n,并通过改变激发条件,找出各模式对应的 m-线的位置。

实验中,我们按照激发出某一模式的入射角 θ_i 来测定 β_{mn} 时,应以该模式对应的m-4光强度达极大值来判断的。图4是阶跃型单模光纤中激发的远场辐射图样与m-4的照片。 选模激发是通过调节入射角 θ_i 来实现的。图4(a)、(b)、(c)是当观察屏离输出棱镜 2m 多 远时,拍摄到的m-430别对应于LPo1、LP11、LP21、(LP02)模的照片。拍摄时,改变选模激 发条件,分别使某一条m-43最亮,即光纤中主要传输其对应的模式,并用长度不同的暗段 来标记各条m-43。由于LP02 与LP21模的传输系数相差太小(见表 2),以至只有在更远的 观察距离才能将它们对应的m-43区分开来。但是,由于包层腐蚀后,表面的粗糙引起光散 射,使m-43有一定的宽度,所以很难区分该二个模式对应的m-43。

LPon模 LPn模 LPn模 LPon模 图 4 用单模光纤激发的远场辐射图样与 m-线 Fig. 4 Far-field radiation patterns and m-lines of a single-mode fiber

表2给出了几个标量模的传输系数 β_{mn} 的测定值与计算值,两者的数值是非常接近的。 测定值分别由测得的入射角 θ_i 与 m-线的位置(高度 h)计算得到;计算值按前述方法,先由 光纤参数在 B-v 关系曲线上图解得到各标量模的 B 值, 然后按(3)式算得 β_{mn} 。B 的图解 精度为 0.002, 引起 β_{mn} 的误差为 0.0001 μ m⁻¹。由于所用阶跃单模光纤的折射率分布曲线 中心有一凹陷,因而计算基模传输系数时,参数 v 改用 Matsumura¹⁶¹提出的等效理想阶跃 折射率(ESI)参数 $v_s = v(a_s/a)(\sqrt{\Delta_s}/\sqrt{\Delta})$,由此得到的数值与实际的基模传输系数相差极 小。 从 Matsumura 给出的曲线可知,当凹陷深度相对值 $D = (d/\Delta) = 0.4$,折射率系数 (index coefficient) g = 4,差值约为 0.0002 μ m⁻¹; g = 6,约为 0.0001 μ m⁻¹,随 g 增大,差值 迅速减小。本实验所用阶跃单模光纤 $D \simeq 0.5$, $g \simeq 4$,估计 $v_s \simeq 0.8v$ 。对于其余低价模式,

651

7期

表 2 几个标量模 β_{mn} 的测定值与计算值

Table 2 β_{mn} values measured and calculated for several scalar modes

 $(L'=227.0 \text{ cm}, n_p=1.751, \lambda_c=1.17 \,\mu\text{m}, 2a=9 \,\mu\text{m}, \Delta=0.3\%)$

标量模	$h(\mathrm{cm})$	β _{mn} 测定值(μm ⁻¹)	θί	β _{mn} 测定值(μm ⁻¹)	β _{mn} 计算值(μm ⁻¹)
LP ₀₁	104.6~104.8	14.480	20°26′	14.497	14.5192
LP ₁₁	105.0~105.3	14.471	20°20'	14.488	14.5098
LP_{21}	105.7~106.0	14.457	20°10.5′	14.474	14.4978
LP_{02}	105.7~106.0	14.457	20°10′	14.473	14.4969

尚无相应的 ESI 参数法可循。本实验测定值误差为 0.001 μm⁻¹,因而仍用上述 ν₂ 参数,求 得的数值还是具有与测定值进行比较的价值的。测量 ESI 参数的方法有多种,较简便的是 通过远场模斑、截止波长的测量或两个波长下模斑的测量来得到⁵³⁷。

为了测定光纤中标量模的传输系数,采用了棱镜-光纤耦合器,对不同的标量模进行了 选模激发,对于ν较小的情况,能判别被激发模式的 m、n值,按棱镜耦合的相位匹配条件, 标量模传输系数的测量转化为入射角 θ_i 或 m-线位置的测量。 测定值与计算值符合得很 好。实验结果表明,该方法能应用于实际测量中。

实验用的单模光纤由上海石英玻璃厂提供,在此表示感谢。

参考文献

- [1] H. Kobrinski, G. J. Herskowitz; Appl. Opt., 1983, 22, No. 23 (1 Dec), 3880.
- [2] J. E. Midwinter; Opt. & Quant. Electron., 1975, 7, No. 4 (Jul), 297.
- [3] P. K. Tien, R. Ulrich et al.; Appl. Phys. Lett., 1969, 14, No. 9 (1 May), 291.
- [4] D. Gloge; Appl. Opt., 1971, 10, No. 10 (Oct), 2252.
- [5] 张一龙等; 《光学学报》, 1984, 4, No. 11 (Nov), 1046.

[6] H. Matsumura, T. Suganuma; Appl. Opt., 1980, 19, No. 18 (15 Sep), 3151.

Determination of propagation coefficient for scalar modes in optical fiber

SUN ZONGJIAN (Department of Physics, Tongji University, Shanghai) (Received 29 October 1984; revised 12 February 1985)

Abstract

In the paper it is reported that using a prism-fiber coupler, the propagation coefficient β_{mn} for scalar modes travelling in optical fiber can be determined by measuring coupling angles or positions of *m*-lines. Each scalar mode can be excited by varying the coupling angle. The so-called *m*-line corresponding to each scalar mode is coupled out of an output prism. Its characteristics are different from those of the *m*-line coupled out of a planar waveguide. The degeneration of β_{mn} is shown on the *m*-line photograph. A good agreement is obtained between the measured and calculated values of β_{mn} .